Mass Spectrometric Methodologies for Investigating the Metabolic Signatures of Parkinson’s disease: Current Progress and Future Perspectives

Congratulations Dr. Okun on the publication of “Mass Spectrometric Methodologies for Investigating the Metabolic Signatures of Parkinson’s disease: Current Progress and Future Perspectives,” in the Analytical Chemistry’s January 31st issue.

 

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder resulting from the loss of dopaminergic neurons of the substantia nigra as well as degeneration of motor and non-motor basal ganglia circuitries. Typically known for classical motor deficits (tremor, rigidity, bradykinesia), early stages of the disease are associated with a large non-motor component (depression, anxiety, apathy, etc.). Currently there are no definitive biomarkers of PD, and the measurement of dopamine metabolites does not allow for detection of prodromal PD, nor does it aid in long-term monitoring of disease progression. Given that PD is increasingly recognized as complex and heterogeneous, involving several neurotransmitters and proteins, it is of importance that we advance interdisciplinary studies to further our knowledge of the molecular and cellular pathways that are affected in PD. This approach will yield useful biomarkers for early diagnosis and will ultimately result in the development of disease-modifying therapies. Here, we discuss pre-analytical factors associated with metabolomics studies, summarize current mass spectrometric methodologies used to evaluate the metabolic signature of PD, and provide future perspectives of the rapidly developing field of MS in the context of PD.