Congratulations to Dr Nikolaus McFarland on the publication of “Dissecting α-synuclein inclusion pathology diversity in multiple system atrophy: implications for the prion-like transmission hypothesis” in the latest issue of Laboratory Investigation.
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of insoluble, aggregated α-synuclein (αS) pathological inclusions. Multiple system atrophy (MSA) presents with extensive oligodendroglial αS pathology and additional more limited neuronal inclusions while most of the other synucleinopathies, such as Parkinson’s disease and dementia with Lewy bodies (DLB), develop αS pathology primarily in neuronal cell populations. αS biochemical alterations specific to MSA have been described but thorough examination of these unique and disease-specific protein deposits is further warranted especially given recent findings implicating the prion-like nature of synucleinopathies perhaps with distinct strain-like properties. Taking advantage of an extensive panel of antibodies that target a wide range of epitopes within αS, we investigated the distinct properties of the various types of αS inclusion present in MSA brains with comparison to DLB. Brain biochemical fractionation followed by immunoblotting revealed that the immunoreactive profiles were significantly more consistent for DLB than for MSA. Furthermore, epitope-specific immunohistochemistry varied greatly between different types of MSA αS inclusions and even within different brain regions of individual MSA brains. These studies highlight the importance of using a battery of antibodies for adequate appreciation of the various pathology in this distinct synucleinopathy. In addition, it can be posited that if the spread of pathology in MSA undergoes prion-like mechanisms, “strains” of αS aggregated conformers must be inherently unstable and readily mutable, perhaps resulting in a more stochastic progression process.